THE EFFECT OF COAL MINING ACTIVITIES ON HYDROLOGICAL PARAMETER CHANGE

Harjuni Hasan, Edhi Sarwono

Abstract


Mining is a conventional activity that alters the natural landscape and causes hydrological parameter changes and environmental disruptions, such as hampered vegetation growth due to water table subsidence, damaged productive land that affects the river flow, water pollution, deforestation, and erosion. Land clearing for coal mining activity potentially damages the soil layer structure, due to the loss of ground cover vegetation, so hydrological parameter changes, including an 11.79% (50.55 mm) decreased base flow, 40.35% (273.73 mm) increased direct runoff, 21.92% (250.30 mm) increased surface runoff, an 15.73% (76.21 mm) decreased infiltration, 11.03 % (122.52 mm) increased potential evapotranspiration, causing fluctuating river debit. Every 10 Ha of land clearing for mining activities related to 51.46% (291.36 mm) increased runoff. Meanwhile, the postmining activities, including reclamation and vegetation, could only decrease the baseflow by 6.95% (5.95 mm) while increasing the direct runoff, surface runoff, infiltration, and potential evapotranspiration by 9.36% (89.11 mm), 11.19% (148.20 mm), 3.81% (15.56 mm), and 1.73% (21.34 mm), respectively. Furthermore, every 10 Ha of reclamation area is related to an 47.22% (264.62 mm) decrease in runoff.


Full Text:

PDF

References


Al Farisi, M. S. (2021). Desentralisasi Kewenangan Pada Urusan Pertambangan Mineral dan Batubara dalam Undang-Undang Nomorn 3bTahun 2020. Jurnal Ilmiah Ecosystem, 21(1). https://doi.org/10.35965/eco.v21i1.699

Dumedah, G., Andam-Akorful, S. A., Ampofo, S. T., & Abugri, I. (2021). Characterizing urban morphology types for surface runoff estimation in the Oforikrom Municipality of Ghana. Journal of Hydrology: Regional Studies, 34. https://doi.org/10.1016/j.ejrh.2021.100796

Field, R. T. (2005). John Russell (Russ) Mather at the Laboratory of Climatology. Physical Geography, 26(6). https://doi.org/10.2747/0272-3646.26.6.434

Hopmans, J. W. (2000). Isotope Tracers in Catchment Hydrology, Carol Kendall and Jeffrey J. McDonnell (Eds.); Elsevier, Amsterdam, 1998, ISBN 0-444-81546 (hardbound) or 0-1444-50155-X (softbound). Advances in Water Resources, 23(4). https://doi.org/10.1016/s0309-1708(99)00033-0

Hu, S., Fan, Y., & Zhang, T. (2020). Assessing the effect of land use change on surface runoff in a rapidly Urbanized City: A case study of the central area of Beijing. Land, 9(1). https://doi.org/10.3390/land9010017

Jung, C. G., Lee, D. R., & Moon, J. W. (2016). Comparison of the Penman‐Monteith method and regional calibration of the Hargreaves equation for actual evapotranspiration using SWAT-simulated results in the Seolma-cheon basin, South Korea. Hydrological Sciences Journal, 61(4). https://doi.org/10.1080/02626667.2014.943231

Khobragade, K. (2020). Impact of Mining Activity on environment: An Overview. International Journal of Scientific and Research Publications (IJSRP), 10(05). https://doi.org/10.29322/ijsrp.10.05.2020.p10191

Kissel, M., & Schmalz, B. (2020). Comparison of baseflow separation methods in the german low mountain range. Water (Switzerland), 12(6). https://doi.org/10.3390/w12061740

Lederle, R., Shepard, T., & de La Vega Meza, V. (2020). Comparison of methods for measuring infiltration rate of pervious concrete. Construction and Building Materials, 244. https://doi.org/10.1016/j.conbuildmat.2020.118339

Li, C., Liu, M., Hu, Y., Shi, T., Qu, X., & Walter, M. T. (2018). Effects of urbanization on direct runoff characteristics in urban functional zones. Science of the Total Environment, 643. https://doi.org/10.1016/j.scitotenv.2018.06.211

Li, H., Zhang, Y., & Zhou, X. (2015). Predicting surface runoff from catchment to large region. In Advances in Meteorology (Vol. 2015). https://doi.org/10.1155/2015/720967

Liu, C., Sun, G., McNulty, S. G., Noormets, A., & Fang, Y. (2017). Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements. Hydrology and Earth System Sciences, 21(1). https://doi.org/10.5194/hess-21-311-2017

Liu, Q., Liu, S., Hu, G., Yang, T., Du, C., & Oeser, M. (2021). Infiltration Capacity and Structural Analysis of Permeable Pavements for Sustainable Urban: A Full-scale Case Study. Journal of Cleaner Production, 288. https://doi.org/10.1016/j.jclepro.2020.125111

Liu, W., Wei, X., Fan, H., Guo, X., Liu, Y., Zhang, M., & Li, Q. (2015). Response of flow regimes to deforestation and reforestation in a rain-dominated large watershed of subtropical China. Hydrological Processes, 29(24). https://doi.org/10.1002/hyp.10459

Maity, R. (2018). Statistical Methods in Hydrology and Hydroclimatology. In Springer.

Mishra, S. K., Gajbhiye, S., & Pandey, A. (2013). Estimation of design runoff curve numbers for Narmada watersheds (India). Journal of Applied Water Engineering and Research, 1(1). https://doi.org/10.1080/23249676.2013.831583

Mo, C., Ruan, Y., Xiao, X., Lan, H., & Jin, J. (2021). Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China. Ecological Indicators, 126. https://doi.org/10.1016/j.ecolind.2021.107628

Moreno-de las Heras, M. (2009). Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-Continental environment. Geoderma, 149(3–4). https://doi.org/10.1016/j.geoderma.2008.12.003

Odiji, C. A., Aderoju, O. M., Ekwe, M. C., Oje, D. T., & Imhanfidon, J. O. (2020). Surface runoff estimation in an upper watershed using geo-spatial based soil conservation service-curve number method. Global Journal of Environmental Science and Management, 6(3). https://doi.org/10.22034/gjesm.2020.03.10

OKI, T., AGATA, Y., KANAE, S., SARUHASHI, T., YANG, D., & MUSIAKE, K. (2001). Global assessment of current water resources using total runoff integrating pathways. Hydrological Sciences Journal, 46(6). https://doi.org/10.1080/02626660109492890

Oktarinasari, E., Yusuf, M., & Arief, T. (2021). PENERAPAN PROGRAM CORPORATE SOCIAL RESPONSIBILITY PADA PERUSAHAAN TAMBANG BATUBARA PT. X DI KABUPATEN LAHAT. Jurnal Pertambangan, 5(1). https://doi.org/10.36706/jp.v5i1.20

Panahi, M., Khosravi, K., Ahmad, S., Panahi, S., Heddam, S., Melesse, A. M., Omidvar, E., & Lee, C. W. (2021). Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: A study in Western Iran. Journal of Hydrology: Regional Studies, 35. https://doi.org/10.1016/j.ejrh.2021.100825

Seiller, G., & Anctil, F. (2016). How do potential evapotranspiration formulas influence hydrological projections? Hydrological Sciences Journal, 61(12). https://doi.org/10.1080/02626667.2015.1100302

Setiadi, P. A., Wijayanti, Y., Cahyono, C., & Juliastuti. (2022). FJ.Mock Method for Hydrological model in Water Reliability Study at Jatiluhur Estate, Purwakarta. IOP Conference Series: Earth and Environmental Science, 998(1). https://doi.org/10.1088/1755-1315/998/1/012003

Shadeed, S., & Almasri, M. (2010). Application of GIS-based SCS-CN method in West Bank catchments, Palestine. Water Science and Engineering, 3(1). https://doi.org/10.3882/j.issn.1674-2370.2010.01.001

Singh, B., Sihag, P., Parsaie, A., & Angelaki, A. (2021). Comparative analysis of artificial intelligence techniques for the prediction of infiltration process. Geology, Ecology, and Landscapes, 5(2). https://doi.org/10.1080/24749508.2020.1833641

SOELISTIJO, U. W. (2012). Several evaluation and analytical indicators of regional autonomy implementation impacts in Indonesia: Energy and Mineral Resource Sector Development. Indonesian Mining Journal.

Soulis, K. X., Valiantzas, J. D., Dercas, N., & Londra, P. A. (2009). Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrology and Earth System Sciences, 13(5). https://doi.org/10.5194/hess-13-605-2009

T.O.Olatayo, & Taiwo, A. I. (2014). Statistical Modelling and Prediction of Rainfall Time Series Data. Global Journal of Comuter Science and Technology:, 14(1).

Vannasy, M., & Nakagoshi, N. (2016). Estimating direct runoff from storm rainfall using NRCS runoff method and GIS mapping in Vientiane city, Laos. International Journal of Grid and Distributed Computing, 9(4). https://doi.org/10.14257/ijgdc.2016.9.4.23

Wantzen, K. M., & Mol, J. H. (2013). Soil erosion from agriculture and mining: A threat to tropical stream ecosystems. Agriculture (Switzerland), 3(4). https://doi.org/10.3390/agriculture3040660

Wayan Sutapa, I., Arafat, Y., Gede Tunas, I., & Fitrianti, F. (2021). Impact of Climate Change on the Water Sector in the Singkoyo Watershed, Central Sulawesi, Indonesia. ARPN Journal of Engineering and Applied Sciences, 16(4).

Yin, S., Xie, Y., Liu, B., & Nearing, M. A. (2015). Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions. Hydrology and Earth System Sciences, 19(10). https://doi.org/10.5194/hess-19-4113-2015




DOI: http://dx.doi.org/10.30872/cmg.v8i1.14797

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published by:

Program Studi Teknik Kimia

Fakultas Teknik

Universitas Mulawarman

Jalan Sambaliung - No. 9 Sempaja Selatan

Kec. Samarinda Ulu, Kota Samarinda, Kalimantan Timur

Kode Pos. 75117 

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.