Pemanfaatan Limbah Tongkol Jagung sebagai Bioadsorben dalam Proses Adsorpsi Besi(II) dan Metilen Biru

Novi Eka Mayangsari, Tarikh Azis Ramadani, Ayu Nindyapuspa, Gumelar Muluk As-sajdah

Abstract


Pertumbuhan industri akan menghasilkan efek samping, salah masalahnya adalah pencemaran limbah cair yang mengandung logam berat dan zat warna. Pencemaran tersebut dapat berdampak buruk bagi lingkungan sehingga perlu untuk diolah. Proses pengolahan limbah cair yang dapat dilakukan adalah dengan proses adsorpsi. Adsorpsi menggunakan karbon aktif berbahan dasar tongkol jagung yang sebelumnya dilakukan proses karbonasi pada 350⁰C selama 3 jam. Tongkol jagung yang telah menjadi karbon, dihaluskan hingga ukuran 20, 40, dan 60 mesh. Proses aktivasi dengan larutan ZnCl2 0,3 M. Proses adsorpsi ini berlangsung secara kontinu dengan debit 100 ml/menit. Karbon aktif yang dihasilkan telah memenuhi spesifikasi karbon aktif berdasarkan SNI. Proses adsorpsi secara kontinu ini berhasil menurunkan besi(II) hingga 99,55% dengan ukuran karbon aktif sebesar 40 mesh. Hal serupa juga berhasil dilakukan untuk menurunkan metilen biru hingga 97,565% dengan ukuran karbon aktif sebesar 60 mesh. Nilai penurunan ini dipengaruhi oleh penurunan ukuran partikel yang akan berdampak pada peningkatan besar kapasitas adsorpsi.


Full Text:

PDF

References


Alsulaili, A.D., Refaie, A.A., dan Garcia, H.A., (2023) ‘Adsorption Capacity of Activated Carbon Derived from Date Seeds: Characterization, Optimization, Kinetic and Equilibrium Studies’, Chemosphere, 313, pp. 1-10. https://doi.org/10.1016/j.chemosphere.2022.137554.

Bergna, D., Varila, T., Romar, H., dan Lassi, U., (2022) ‘Activated carbon from hydrolysis lignin: Effect of Activation Method on Carbon Properties’, Biomass and Bioenergy, 159, pp. 1-8. https://doi.org/10.1016/j.biombioe.2022.106387.

Bosch, D., Back, J.O., Gurtner, D., Giberti, S., Hofmann, A., dan Bockreis, A., (2022) ‘Alternative Feedstock for the Production of Activated Carbon with ZnCl2: Forestry Residue Biomass and Waste Wood’, Carbon Resources Conversion, 5, pp. 299-309. https://doi.org/10.1016/j.crcon.2022.09.001.

Dada, A.O., Inyinbor, A.A., Tokula, B.E., Bello, O.S., dan Pal, U. (2022) ‘Preparation and characterization of rice husk activated carbon-supported zinc oxide nanocomposite (RHAC-ZnO-NC)’, Heliyon, 8, pp. 1-8. https://doi.org/10.1016/j.heliyon.2022.e10167.

Dimpe, K.M., dan Nomngongo, P.N. (2017) ‘A Review on The Efficacy of The Application of Myriad Carbonaceous Materials for The Removal of Toxic Trace Elements in The Environment’, Trends in Environmental Analytical Chemistry, 16, pp. 24–31. https://doi.org/10.1016/j.teac.2017.10.001.

Erawati, E. dan Fernando, A. (2018) ‘Pengaruh Jenis Aktivator dan Ukuran Karbon Aktif Terhadap Pembuatan Adsorbent dari Serbik Gergaji Kayu Sengon (Paraserianthes Falcataria)’, Jurnal Integrasi Proses, 7, pp. 58-66. http://dx.doi.org/10.36055/jip.v7i2.3808.

Gan, Yong X. (2021) ‘Activated Carbon from Biomass Sustainable Sources’, Journal of Carbon Research, pp. 1-33. https://doi.org/10.3390/c7020039.

Giraldo, S., Robles, I., Godínez, L.A., Acelas, N., dan Flórez, E. (2021) ‘Experimental and Theoretical Insights on Methylene Blue Removal from Wastewater Using an Adsorbent Obtained from the Residues of the Orange Industry,’ Molecules, 26, pp. 1-15. https://doi.org/10.3390/molecules26154555.

He, X., Chen, X., Wang, X., dan Jiang, L. (2023) ‘Optimization of Activated Carbon Production From Corn Cob Using Response Surface Methodology’, Frontier in Enviromental Science, pp. 1-11. doi: 10.3389/fenvs.2023.1105408.

Jawad, A.H., Saud Abdulhameed, A., Wilson, L.D., Syed-Hassan, S.S.A., ALOthman, Z.A., dan Rizwan Khan, M. (2021) ‘High Surface Area and Mesoporous Activated Carbon from KOH-Activated Dragon Fruit Peels for Methylene Blue Dye Adsorption: Optimization and Mechanism Study’, Chinese Journal of Chemical Engineering, 32, pp. 281–290. https://doi.org/10.1016/j.cjche.2020.09.070.

Khalil, K.M.S., Elhamdy, W.A., Mohammed, K.M.H., dan Said, A.E.A.A. (2022) ‘Nanostructured P-doped Activated Carbon with Improved Mesoporous Texture Derived from Biomass for Enhanced Adsorption of Industrial Cationic Dye Contaminants’, Materials Chemistry dan Physics, 282, 125881. https://doi.org/10.1016/j.matchemphys.2022.125881

Makhwedzha, R.D., Mavhungu, A., Moropeng, M.L., dan Mbaya, R. (2022) ‘Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater’, Heliyon, 8, pp. 1-9. https://doi.org/10.1016/j.heliyon.2022.e09930.

Maulina S., Iriansyah, M. (2018) ‘Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder’, IOP Conf. Series: Materials Science and Engineering, 309, pp. 1-7. 10.1088/1757-899X/309/1/012072.

Maryudi, M., Amelia, S., dan Salamah, S. (2019) ‘Removal of Methylene Blue of Textile Industry Waste with Activated Carbon using Adsorption Method’, Reaktor, 19, pp. 168-171. https://doi.org/10.14710/reaktor.19.4.168-171

Musthofa, A.M.H., Syafila, M., dan Helmy, Q. (2023) ‘Effect of Activated Carbon Particle Size on Methylene Blue Adsorption Process in Textile Wastewater’, Indonesian Journal of Chemistry, 23, pp. 461-474. https://doi.org/10.22146/ijc.79784.

Pan, L., Nishimura, Y., Takaesu, H., Matsui, Y., Matsushita, T., dan Shirasaki, N. (2017) ‘Effects of Decreasing Activated Carbon Particle Diameter from 30 μm to 140 nm on Equilibrium Adsorption Capacity, Water Research, 124, pp. 425-434. https://doi.org/10.1016/j.watres.2017.07.075.

Prasad, A.L., Santhi, T., Manonmani, S. (2015) ‘Recent developments in preparation of activated carbons by microwave: Study of residual errors’, Arabian Journal of Chemistry, 8, pp. 343-354. https://doi.org/10.1016/j.arabjc.2011.01.020.

Pusat Data dan Sistem Informasi Pertaniann Kementrian Pertanian. (2020). Outlook Jagung. Jakarta: Kementrian Pertanian.

Shamsuddin, M.S., Yusoff, N.R.N., Sulaiman, M.A. (2016) ‘Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation’, Procedia Chemistry, 19, pp. 558-565, https://doi.org/10.1016/j.proche.2016.03.053.

Takaesu, H., Matsui, Y., Nishimura, Y., Matsushita, T., dan Shirasaki, N. (2019) ‘Micro-milling super-fine powdered activated carbon decreases Adsorption capacity by Introducing Oxygen/hydrogen-containing Functional Groups on Carbon Surface from Water’, Water Research, 155, pp. 66-75. https://doi.org/10.1016/j.watres.2019.02.019.

Wang, B., Lan, J., Bo, C., Gong, B., dan Ou, J. (2023)’ Adsorption of heavy metal onto biomass-derived activated carbon: review’, RSC Advances, 13, pp. 4275–4302. 10.1039/d2ra07911a.

Zega, F.I., Selly, R., dan Zubir, M. (2021) ‘Review of Adsorption of Fe Metal by Activated Carbon Adsorbent’, Indonesian Journal of Chemical Science and Technology, 4, pp. 74-78. https://doi.org/10.24114/ijcst.v4i2.27600.




DOI: http://dx.doi.org/10.30872/cmg.v8i1.11152

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published by:

Program Studi Teknik Kimia

Fakultas Teknik

Universitas Mulawarman

Jalan Sambaliung - No. 9 Sempaja Selatan

Kec. Samarinda Ulu, Kota Samarinda, Kalimantan Timur

Kode Pos. 75117 

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.