Kajian Penerapan Jarak Euclidean, Manhattan, Minkowski, dan Chebyshev pada Algoritma Clustering K-Prototype
Abstract
Keywords
Full Text:
PDFReferences
Thant, Aye & Aye, Soe. (2020). Euclidean, Manhattan and Minkowski Distance Methods For Clustering Algorithms. International Journal of Scientific Research in Science, Engineering and Technology. 553-559. 10.32628/IJSRSET2073118.
Ji, J., Pang, W., Zhou, C., Han, X., & Wang, Z. (2012). A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data. Knowl. Based Syst., 30, 129-135.
Ahmad, Amir & Dey, Lipika. (2007). A k-mean clustering algorithm for mixed numeric and categorical data. Data & Knowledge Engineering. 63. 503-527. 10.1016/j.datak.2007.03.016.
Faisal, M & Zamzami, E & Sutarman, (2020). Comparative Analysis of Inter-Centroid K-Means Performance using Euclidean Distance, Canberra Distance and Manhattan Distance. Journal of Physics: Conference Series. 1566. 012112. 10.1088/1742-6596/1566/1/012112.
Nooraeni, R. (2015). Metode Cluster Menggunakan Kombinasi Algoritma Cluster K-Prototype dan Algoritma Genetika untuk Data Bertipe Campuran.
Huang, Z. (1997). Clustering Large Data Sets with Mixed Numeric and Categorical Values.
Khairi, R & Fitri, Sari & Rustam, Zuherman & Pandelaki, Jacub. (2021). Fuzzy C-Means Clustering with Minkowski and Euclidean Distance for Cerebral Infarction Classification. Journal of Physics: Conference Series. 1752. 012033. 10.1088/1742-6596/1752/1/012033.
Arsa, M.I. (2018). Kombinasi Algoritme Genetika dan Fuzzy K-Prototype untuk Pengelompokan Data Campuran.
Grabusts, Peter. (2015). The Choice of Metrics for Clustering Algorithms. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference. 2. 70. 10.17770/etr2011vol2.973.
Bora, Dibya & Gupta, Dr. (2014). Effect of Different Distance Measures on the Performance of K-Means Algorithm: An Experimental Study in Matlab. 5.
Liu, Hsiang-Chuan & Jeng, Bai-Cheng & Yih, Jeng-Ming & Yu, Yen-Kuei. (2009). Fuzzy C-means algorithm based on standard mahalanobis distances. Proceedings of the 2009 International Symposium on Information Processing (ISIP'09).
Ahmad, A., & Khan, S.S. (2019). Survey of State-of-the-Art Mixed Data Clustering Algorithms. IEEE Access, 7, 31883-31902.
Haryati, A. E., Surono, S., & Suparman, S. (2021). Implementation of Minkowski-Chebyshev Distance in Fuzzy Subtractive Clustering. EKSAKTA: Journal of Sciences and Data Analysis, 2(2), 82–87. https://doi.org/10.20885/EKSAKTA.vol2.iss2.art1.
Hsu, Chung-Chian & Huang, Yan-Ping. (2008). Incremental clustering of mixed data based on distance hierarchy. Expert Systems with Applications. 35. 1177-1185. 10.1016/j.eswa.2007.08.049.
Ji, Jinchao & Zhou, Chunguang & Wang, Zhe & He, Jialiang & Bai, Tian. (2012). A fuzzy k-prototypes algorithm using fuzzy centroid for clustering mixed data. International Journal of Advancements in Computing Technology. 4. 281-290. 10.4156/ijact.vol4.issue7.31.
Nishom, M.. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT. 4. 20-24. 10.30591/jpit.v4i1.1253.
Nooraeni, R., Arsa, M.I., & Kusumo Projo, N.W. (2021). Fuzzy Centroid and Genetic Algorithms: Solutions for Numeric and Categorical Mixed Data Clustering. Procedia Computer Science, 179, 677-684.
Santoso, A.B. (2021). Fuzzy K-Prototype Geographically Weighted Clustering yang Dioptimasi Menggunakan Algoritma Genetika untuk Data Campuran (Studi Kasus: Indikator Indeks Pembangunan Desa di Kabupaten Temanggung Tahun 2018).
Shirkhorshidi, A. S., Aghabozorgi, S., & Wah, T. Y. (2015). A Comparison Study on Similarity and Dissimilarity Measures in Clustering Continuous Data. PloS one, 10(12), e0144059. https://doi.org/10.1371/journal.pone.0144059.
Singh, Archana & Yadav, Avantika & Rana, Ajay. (2013). K-means with Three different Distance Metrics. International Journal of Computer Applications. 67. 13-17. 10.5120/11430-6785.
Szepannek, G. (2018). clustMixType: User-Friendly Clustering of Mixed-Type Data in R. R J., 10, 200.
Widodo, S., Brawijaya, H., & Samudi, S. (2021). Clustering Kanker Serviks Berdasarkan Perbandingan Euclidean dan Manhattan Menggunakan Metode K-Means.
DOI: http://dx.doi.org/10.30872/jsakti.v4i2.9241
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Sains, Aplikasi, Komputasi dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
2nd Floor, Faculty of Computer Science and Information Technology
Jl. Panajam Kampus Gn. Kelua Universitas Mulawarman Samarinda-Kalimantan Timur 75123
Phone: +62 813 31112002 (Haviluddin) +62 811 8207777 (Reza)
E-Mail: jurnal.sakti.fkti@gmail.com; sakti@unmul.ac.id
Sains, Aplikasi, Komputasi dan Teknologi Informasi by http://e-journals.unmul.ac.id/index.php/jsakti eISSN: 2684-8473 is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.