POTENSI LIPID MIKROALGA AURANTIOCHYTRIUM DARI HUTAN BAKAU INDONESIA SEBAGAI BAHAN BAKU PRODUKSI BIOFUEL

Suhendra Suhendra, Veranica Veranica, Nurliana Handayani, Andri Hutari

Abstract


Microalgae's high lipid content makes them an alternative raw material for the generation of biofuel. This research examines the potential of Aurantiochytrium microalgae sourced from mangrove forests. The capacity to create omega-3 polyunsaturated fatty acids, such DHA, which have a high economic value, is one benefit of Aurantiochytrium microalgae and makes integrated production with biofuel production feasible. The possible biofuel products from Aurantiochytrium microalgae, including biodiesel and bioviation fuel, are reviewed in this research. These microalgae go through multiple steps in the biofuel production process, including isolation, cultivation, lipid extraction, and hydroprocessing and transesterification to turn the algae into biodiesel or biojet fuel. The first steps toward producing biofuel from Aurantiochytrium microalgae obtained from Indonesian mangrove forests are expected to be laid by this research.


Full Text:

PDF

References


Adarme-Vega, T. C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11, 1–10. https://doi.org/10.1186/1475-2859-11-96

Chen, H., Ding, M., Li, Y., Xu, H., Li, Y., & Wei, Z. (2020a). Feedstocks, environmental effects and development suggestions for biodiesel in China. Journal of Traffic and Transportation Engineering (English Edition), 7(6), 791–807. https://doi.org/10.1016/j.jtte.2020.10.001

Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R. D., Drogui, P., & Surampalli, R. Y. (2018). The potential of microalgae in biodiesel production. 90(March), 336–346. https://doi.org/10.1016/j.rser.2018.03.073

Chozhavendhan, S., Vijay Pradhap Singh, M., Fransila, B., Praveen Kumar, R., & Karthiga Devi, G. (2020). A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry, 1–2(April), 1–6. https://doi.org/10.1016/j.crgsc.2020.04.002

Dellero, Y., Cagnac, O., Rose, S., Seddiki, K., Cussac, M., Morabito, C., Lupette, J., Aiese Cigliano, R., Sanseverino, W., Kuntz, M., Jouhet, J., Maréchal, E., Rébeillé, F., & Amato, A. (2018). Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. Algal Research, 35, 125–141. https://doi.org/10.1016/j.algal.2018.08.018

Deshmukh, S., Kumar, R., & Bala, K. (2019). Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Processing Technology, 191(November 2018), 232–247. https://doi.org/10.1016/j.fuproc.2019.03.013

Halim, R., Gladman, B., Danquah, M. K., & Webley, P. A. (2011). Bioresource Technology Oil extraction from microalgae for biodiesel production. Bioresource Technology, 102(1), 178–185. https://doi.org/10.1016/j.biortech.2010.06.136

Honda, D., Yokochi, T., Nakahara, T., Erata, M., & Higashihara, T. (1998). Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycological Research, 102(4), 439–448. https://doi.org/10.1017/S0953756297005170

Hong, W. K., Kim, C. H., Rairakhwada, D., Kim, S., Hur, B. K., Kondo, A., & Seo, J. W. (2012). Growth of the oleaginous microalga Aurantiochytrium sp. KRS101 on cellulosic biomass and the production of lipids containing high levels of docosahexaenoic acid. Bioprocess and Biosystems Engineering, 35(1–2), 129–133. https://doi.org/10.1007/s00449-011-0605-0

Hutari, A., An Nisaa, R., Suhendra, S., Agustin, Y., & Ayunda, K. A. (2022). Exploration Of High Economic Value Microalgaes In The Mangrove Area Of Pari Island, Seribu Islands, Jakarta. JURNAL PEMBELAJARAN DAN BIOLOGI NUKLEUS, 8(3), 662–672. https://doi.org/10.36987/jpbn.v8i3.3096

Kim, K. H., Lee, O. K., Kim, C. H., Seo, J. W., Oh, B. R., & Lee, E. Y. (2016). Lipase-catalyzed in-situ biosynthesis of glycerol-free biodiesel from heterotrophic microalgae, Aurantiochytrium sp. KRS101 biomass. Bioresource Technology, 211, 472–477. https://doi.org/10.1016/j.biortech.2016.03.092

Kralova, I., & Sjöblom, J. (2010a). Biofuels-renewable energy sources: A review. Journal of Dispersion Science and Technology, 31(3), 409–425. https://doi.org/10.1080/01932690903119674

Li, P., Sakuragi, K., & Makino, H. (2019). Extraction techniques in sustainable biofuel production: A concise review. Fuel Processing Technology, 193(February), 295–303. https://doi.org/10.1016/j.fuproc.2019.05.009

Li, Q., Du, W., & Liu, D. (2016). Perspectives of microbial oils for biodiesel production. 2008, 749–756. https://doi.org/10.1007/s00253-008-1625-9

Ma, Q., Zhang, Q., Liang, J., & Yang, C. (2021). The performance and emissions characteristics of diesel/biodiesel/alcohol blends in a diesel engine. Energy Reports, 7, 1016–1024. https://doi.org/10.1016/j.egyr.2021.02.027

Mahmudul, H. M., Hagos, F. Y., Mamat, R., Adam, A. A., Ishak, W. F. W., & Alenezi, R. (2017a). Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews, 72(November 2016), 497–509. https://doi.org/10.1016/j.rser.2017.01.001

Mahmudul, H. M., Hagos, F. Y., Mamat, R., Adam, A. A., Ishak, W. F. W., & Alenezi, R. (2017b). Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews, 72(November 2016), 497–509. https://doi.org/10.1016/j.rser.2017.01.001

Martins, A., Caetano, N. S., & Mata, T. M. (2010). Microalgae for biodiesel production and other applications : A review. 14, 217–232. https://doi.org/10.1016/j.rser.2009.07.020

Nazir, Y., Halim, H., Prabhakaran, P., Ren, X., Naz, T., Mohamed, H., Nosheen, S., Mustafa, K., Yang, W., Hamid, A. A., & Song, Y. (2020a). Different classes of phytohormones act synergistically to enhance the growth, lipid and DHA biosynthetic capacity of Aurantiochytrium sp. SW1. Biomolecules, 10(5), 1–18. https://doi.org/10.3390/biom10050755

Nurachman, Z. (2011). Policy Brief Series 2011 - 3.

Paul Abishek, M., Patel, J., & Prem Rajan, A. (2014). Algae Oil: A Sustainable Renewable Fuel of Future. Biotechnology Research International, 2014(May 2014), 1–8. https://doi.org/10.1155/2014/272814

Perez, C. M. T., Watanabe, K., Okamura, Y., Nakashimada, Y., & Aki, T. (2019a). Metabolite profile analysis of aurantiochytrium limacinum SR21 grown on acetate-based medium for lipid fermentation. Journal of Oleo Science, 68(6), 541–549. https://doi.org/10.5650/jos.ess19020

Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037

Rocha, P. D., Oliveira, L. S., & Franca, A. S. (2019). Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renewable Energy, 143, 1710–1716. https://doi.org/10.1016/j.renene.2019.05.070

Sajjadi, B., Raman, A. A. A., & Arandiyan, H. (2016a). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62–92. https://doi.org/10.1016/j.rser.2016.05.035

Sajjadi, B., Raman, A. A. A., & Arandiyan, H. (2016b). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62–92. https://doi.org/10.1016/j.rser.2016.05.035

Sivaramakrishnan, R., & Incharoensakdi, A. (2018). Microalgae as feedstock for biodiesel production under ultrasound treatment – A review. Bioresource Technology, 250, 877–887. https://doi.org/10.1016/j.biortech.2017.11.095

Suhendra, Chuzaimah, Hutari, A., & Saputro, A. G. E. (2022a). Isolasi Mikroalga Aurantiochytrium dari Hutan Bakau. https://www.youtube.com/watch?v=0PRdXOxHNI8

Suhendra, Chuzaimah, Hutari, A., & Saputro, A. G. E. (2022b). Isolasi Mikroalga dari Hutan Bakau.

Suhendra, Chuzaimah, Hutari, A., & Saputro, A. G. E. (2022c). Produksi Omega-3 Skala Lab dari Mikroalga Aurantiochytrium. https://www.youtube.com/watch?v=101-KOTlbPc

Suhendra, S., Pantoiyo, T., Fazlia, S., Sulistiawati, E., & Evitasari, R. T. (2021). Bioprocess Potentials of Squalene from Thraustochytrids Microalgae for Nutraceuticals in New Normal Era Isolated from Indonesian Mangroves: A Review. CHEMICA: Jurnal Teknik Kimia, 8(1), 18. https://doi.org/10.26555/chemica.v8i1.19121

Suhendra, S., Sulistiawati, E., Evitasari, R. T., Ariandi, T. R., Septianingsih, L., & Hutari, A. (2023). Bioprocess potentials of Aurantiochytrium microalgae from Kulonprogo mangrove forest Yogyakarta, Indonesia. AIP Conference Proceedings, 2667. https://doi.org/10.1063/5.0112298

Torres, S., Acien, G., García-cuadra, F., & Navia, R. (2017). Direct transesteri fi cation of microalgae biomass and biodiesel re fi ning with vacuum distillation. 28(October 2016), 30–38. https://doi.org/10.1016/j.algal.2017.10.001

Xia, A., Sun, C., Fu, Q., Liao, Q., Huang, Y., Zhu, X., & Li, Q. (2020). Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance. Energy, 212, 118581. https://doi.org/10.1016/j.energy.2020.118581

Xu, L., Xiu, Y., Liu, F., Liang, Y., & Wang, S. (2020). Research progress in conversion of CO2to valuable fuels. Molecules, 25(16). https://doi.org/10.3390/molecules25163653




DOI: http://dx.doi.org/10.30872/cmg.v8i1.7586

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published by:

Program Studi Teknik Kimia

Fakultas Teknik

Universitas Mulawarman

Jalan Sambaliung - No. 9 Sempaja Selatan

Kec. Samarinda Ulu, Kota Samarinda, Kalimantan Timur

Kode Pos. 75117 

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.