KARBONISASI LIMBAH KELAPA SAWIT DENGAN PROSES HIDROTERMAL SEBAGAI BAHAN BAKU ELEKTRODA SUPERKAPASITOR

Tantra Diwa Larasati, Tirto Prakoso, Jenny Rizkiana

Abstract


Limbah kelapa sawit merupakan sumber biomassa yang melimpah di Indonesia. Ketersediaan biomassa kelapa sawit ini dapat dimanfaatkan sebagai bahan baku produk bernilai tambah tinggi. Salah satu produk yang dapat dihasilkan adalah karbon aktif. Karbon aktif merupakan material berpori dan memiliki konduktivitas yang baik, membuat karbon aktif cocok digunakan sebagai material elektroda superkapasitor. Karbon aktif dibuat melalui dua proses utama yaitu karbonisasi dan aktivasi. Proses karbonisasi yang dilakukan adalah karbonisasi hidrotermal dilanjutkan dengan aktivasi secara fisika. Penelitian ini difokuskan pada pembuatan karbon aktif berbasis limbah kelapa sawit dengan proses karbonisasi hidrotermal untuk bahan baku superkapasitor. Mesopore area dari karbon aktif terbentuk akibat penggunaan CaCl2 sebagai agen pengaktivasi selama proses hidrotermal. Karbon aktif yang dihasilkan dari tandan kosong kelapa sawit memiliki luas permukaan 375 – 723 m2/g dan ukuran pori 3,4 – 5,6 nm. Pada penelitian ini, karbon aktif digunakan sebagai elektroda kerja pada superkapasitor tipe hybrid simetrikal. Sel superkapasitor ini mampu menghasilkan kapasitansi sebesar 4,3015 F/g.


Full Text:

PDF

References


Abioye, A. M., Noorden, Z. A., & Ani, F. N. (2017) ‘Synthesis and Characterizations of Electroless Oil Palm Shell Based-Activated Carbon/Nickel Oxide Nanocomposite Electrodes for Supercapacitor Applications’, Electrochimica Acta, 225, p. 493-502.

Basu, P. (2013 ‘Biomass Gasification and Pyrolysis: Practical Design and Theory’, Academic Press.

Berge Hydrothermal Carbonization of Municipal Waste Streams

Cencen F and Aktas O 2012 Activated Carbon for Water and Wastewater Treatment Integration of Adsorption and Biological Treatment (Germany: Wiley-VCH).

Das, P., Ganesh, A., Wangikar, P. (2004) ‘Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products’, Biomass and Bioenergy, 27, p. 445-457.

Dirjen Perkebunan Indonesia (2015), ‘Data Statistik Produksi Minyak Kelapa Sawit di Indonesia’, Diakses pada April 2017.

Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., dan Moreno-Casti, C. (2012), ‘Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes’, Bioresource Technology, 111, p. 185-190.

Falco, C., Marco-Lozar, J. P., Salinas-Torres, D., Morallón, E., Cazorla-Amorós, D., Titirici, M. M., dan Lozano-Castelló, D. (2013), ‘Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature’, Carbon, 62, p. 346-355.

Frackowiak, E., dan Béguin, F. (2001), ‘Carbon Materials for the Electrochemical Storage of Energy in Capacitor’s, Carbon, 3, p. 937-950.

Frackowiak, E., Abbas, Q., dan Béguin, F. (2013), ‘Carbon/carbon Supercapacitors’, Journal of Energy Chemistry, 22(2), p. 226-240.

Gu, W., Peters, N., dan Yushin, G. (2013), ‘Functionalized Carbon Onions, Detonation Nanodiamond and Mesoporous Carbon as Cathodes in Li-Ion Electrochemical Energy Storage Devices’, Carbon, 53, p.292-301.

Hendriansyah, R. (2017), ‘Karbonisasi Limbah Sawit Berselulosa untuk Pembuatan Karbon Bahan Superkapasitor’, Tesis Program Magister, Institut Teknologi Bandung.

Jain, A., Jayaraman, S., Balasubramanian, R., dan Srinivasan, M. P. (2014), ‘Hydrothermal Pre-Treatment for Mesoporous Carbon Synthesis: Enhancement of Chemical Activation’, Journal of Materials Chemistry A, 2(2), p. 520-528.

Jain, A., Xu, C., Jayaraman, S., Balasubramanian, R., Lee, J. Y., dan Srinivasan, M. P. (2015), ‘Mesoporous Activated Carbons with Enhanced Porosity by Optimal Hydrothermal Pre-Treatment of Biomass for Supercapacitor Applications’, Microporous and Mesoporous Materials, 218, 55-61.

Jain, A., Balasubramanian, R., dan Srinivasan, M. P. (2015), ‘Tuning hydrochar properties for enhanced mesopore development in activated carbon by hydrothermal carbonization’, Microporous and Mesoporous Materials, 203, p. 178-185.

Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2016), ‘Hydrothermal Conversion of Biomass Waste to Activated Carbon with High Porosity: A review’. Chemical Engineering Journal, 283, p. 789-805.

Jin, H., Wang, X., Gu, Z.., Anderson, G., Muthukumarappan. K. (2014), ‘Distillers Dried Grains with Soluble (DDGS) Bio-Char Based Activated Carbon for Supercapacitors with Organic Electrolyte Tetraethylammonium Tetrafluoroborate’.

Lua, A. C., Lau, F. Y., & Guo, J. (2006) ‘Influence of pyrolysis conditions on pore development of oil-palm-shell activated carbons’, Journal of analytical and applied pyrolysis, 76(1), 96-102.

Marsh, H., dan Rodriguez, F. (2006), ‘Activated Carbon’, Elsevier Science & Technology Books.

N. D. Berge, K. S. Ro, J. Mao, J. R. V. Flora, M. A. Chappel and S. Bae. (2011) "Hydrothermal Carbonization of Municipal Waste Streams," Environmental Science & Technology, vol. 45, no. 13, pp. 5696-5703

Nizamuddin, S., Kumar, J., Subramanian, N., Sahu, J. N., Ganesan, P., Mubarak, N. M., dan Mazari, S. A. (2015), ‘Synthesis and Characterization of Hydrochars Produced by Hydrothermal Carbonization of Oil Palm Shell’, The Canadian Journal of Chemical Engineering, 93(11), p. 1916-1921.

Pottathil, R., Bowers, J.S.Jr., dan Havemann, G.D., (2012), ‘Method of ash removal from biomass’, US Patent 2012 0009660.

Puthusseri, D., Aravindan, V., Madhavi, S., dan Ogale, S. (2014), ‘3D Micro-Porous Conducting Carbon Beehive by Single Step Polymer Carbonization for High Performance Supercapacitors: The Magic of In Situ Porogen Formation’, Energy & Environmental Science, 7(2), p. 728-735.

Thambidurai, A., Lourdusamy, J. K., John, J. V., dan Ganesan, S. (2014), ‘Preparation and Electrochemical Behaviour of Biomass Based Porous Carbons as Electrodes for Supercapacitors - a Comparative Investigation’, Korean Journal of Chemical Engineering, 31(2), p. 268-275.

Yandra, R.E. (2015), ‘Pengaruh Penambahan Carbon Nano Composite pada Superkapasitor Berbasis Biomasa’, Magister Jurusan Teknik Kimia, Institut Teknologi Bandung.

Yuliansyah, A. T., Hirajima, T., Kumagai, S., dan Sasaki, K. (2010), ‘Production of solid biofuel from agricultural wastes of the palm oil industry by hydrothermal treatment’, Waste and biomass valorization, 1(4), p. 395-405.




DOI: http://dx.doi.org/10.30872/cmg.v5i1.5916

Refbacks

  • There are currently no refbacks.




Published by:

Program Studi Teknik Kimia

Fakultas Teknik

Universitas Mulawarman

Jalan Sambaliung - No. 9 Sempaja Selatan

Kec. Samarinda Ulu, Kota Samarinda, Kalimantan Timur

Kode Pos. 75117 

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.