Pengembangan Algoritma Predictive Maintenance Pada Coal Pfister Feeder Dengan Pendekatan Machine Learning
Abstract
Keywords
Full Text:
PDFReferences
Brownlee, J. (2018). XGBoost With Python - Gradient Boosted Trees With XGBoost and scikit-learn.
Chistou, I. T., Kefalakis, N., Zalonis, A., Soldatos, J., & Brochler, R. (2020). End-to-End Industrial IoT Platform for Actionable Predictive Maintanance. IFAC PaperOnline , 173-178.
Dhillon, B. (2005). Reliability, Quality, and Safety for Engineers. New York: CRC PRESS.
Ebeling, C. (1997). An Introduction To Reliability and Maintanability Engineering. New York: McGraw-Hill.
Gonfalonieri, A. (2019, November 7). Retrieved from towards data science: https://towardsdatascience.com/how-to-implement-machine-learning-for-predictive-maintenance-4633cdbe4860
Levitt, J. (2011). Complete Guide to Preventive and Predictive Maintenance Second Edition. New York: Industrial Press Inc.
Moubray, J. (1999). Reliability-centred Maintenance II. North Carolina: The Aladon Network.
Polamuri, S. (2017, May 22). Retrieved from Dataaspirant: https://dataaspirant.com/random-forest-algorithm-machine-learing/
Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 21-45.
Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review 33, 1-39.
Wade, C. (2020). Hands-On Gradient Boosting with XGBoost and scikit-learn. Birmingham: Packt Publishing.
Weiting, Z., Dong, Y., & Hongcao, W. (2019). Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey. Computer Science.
DOI: http://dx.doi.org/10.30872/jsakti.v4i1.6661
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Sains, Aplikasi, Komputasi dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
2nd Floor, Faculty of Computer Science and Information Technology
Jl. Panajam Kampus Gn. Kelua Universitas Mulawarman Samarinda-Kalimantan Timur 75123
Phone: +62 813 31112002 (Haviluddin) +62 811 8207777 (Reza)
E-Mail: jurnal.sakti.fkti@gmail.com; sakti@unmul.ac.id
Sains, Aplikasi, Komputasi dan Teknologi Informasi by http://e-journals.unmul.ac.id/index.php/jsakti eISSN: 2684-8473 is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.