Pengenalan Karakter Tulisan Menggunakan Metode Learning Vector Quantization
Dinda Izmya Nurpadillah, Haviluddin Haviluddin, Herman Santoso Pakpahan, Islamiyah Islamiyah, Hario Jati Setyadi
Abstract
Artikel ini mengimplementasikan metode Learning Vector Quantization (LVQ) dalam mengenali pola aksara Sunda. Berdasarkan hasil eksperimen dengan berbagai parameter seperti learning rate dan jumlah hidden layer maka metode LVQ cukup akurat dalam mengenali pola aksara Sunda dengan nilai akurasi sebesar 6.66% dari data yang berhasil dikenali sebanyak 28 data dengan total data uji sebanyak 42 data dengan variasi learning rate sebesar 0.01 dan jumlah hidden layer sebanyak 90 layer. Hasil akurasi tersebut didapatkan dengan waktu pembelajaran yaitu selama 17 menit 22 detik. Adapun mean square error (MSE) yang dihasilkan sebesar 0.0408. Dari hasil akurasi, MSE dan waktu pembelajaran yang didapatkan maka dapat dikatakan metode LVQ belum optimal dalam memecahkan masalah pengenalan pola terutama aksara Sunda. Teknik optimalisasi kepada proses pembelajaran LVQ dengan algoritma-algoritma optimasi merupakan rencana penelitian selanjutnya.
Keywords
Aksara sunda; Pengenalan pola; LVQ; MSE
DOI:
http://dx.doi.org/10.30872/jsakti.v1i2.2602
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Sains, Aplikasi, Komputasi dan Teknologi Informasi
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
2nd Floor, Faculty of Computer Science and Information Technology
Jl. Panajam Kampus Gn. Kelua Universitas Mulawarman Samarinda-Kalimantan Timur 75123
Phone: +62 813 31112002 (Haviluddin) +62 811 8207777 (Reza)
E-Mail: jurnal.sakti.fkti@gmail.com; sakti@unmul.ac.id
Sains, Aplikasi, Komputasi dan Teknologi Informasi by http://e-journals.unmul.ac.id/index.php/jsakti eISSN: 2684-8473 is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.