Prediksi Tingkat Inflasi Dengan Menggunakan Metode Backpropagation Neural Network
Kelvin Wong, Aji Prasetya Wibawa, Herman Santoso Pakpahan, Anton Prafanto, Hario Jati Setyadi
Abstract
Artikel ini bertujuan untuk memprediksi tingkat inflasi di Kota Samarinda, Kalimantan Timur dengan mengimplementasikan algoritma cerdas, Backpropagation Neural Network (BPNN). Data tingkat inflasi diperoleh dari Biro Pusat Statistik Provinsi (BPS) Kota Samarinda https://samarindakota.bps.go.id/ periode Januari 2012 hingga Januari 2017. Pengukuran akurasi prediksi algoritma BPNN menggunakan metode mean square error (MSE). Berdasarkan hasil percobaan, metode BPNN dengan parameter arsitektur 5-5-5-1; fungsi pembelajaran adalah trainlm; fungsi aktivasi adalah logsig dan purelin; laju pembelajaran adalah 0.1 mampu menghasilkan tingkat kesalahan prediksi yang baik dengan nilai MSE sebesar 0.00000424. Hasil penelitian menunjukkan bahwa algoritma BPNN ini dapat digunakan sebagai alternatif metode dalam memprediksi tingkat inflasi dalam rangka mendukung pertumbuhan ekonomi yang berkesinambungan sehingga dapat meningkatkan kesejahteraan masyarakat di Kota Samarinda, Kalimantan Timur.
Keywords
Backpropagation Neural Network; MSE; Prediksi; Tingkat inflasi; Kota Samarinda
DOI:
http://dx.doi.org/10.30872/jsakti.v1i2.2600
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Sains, Aplikasi, Komputasi dan Teknologi Informasi
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
2nd Floor, Faculty of Computer Science and Information Technology
Jl. Panajam Kampus Gn. Kelua Universitas Mulawarman Samarinda-Kalimantan Timur 75123
Phone: +62 813 31112002 (Haviluddin) +62 811 8207777 (Reza)
E-Mail: jurnal.sakti.fkti@gmail.com; sakti@unmul.ac.id
Sains, Aplikasi, Komputasi dan Teknologi Informasi by http://e-journals.unmul.ac.id/index.php/jsakti eISSN: 2684-8473 is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.