Microbially Induced Calcite Precipitation (MICP) Meningkatkan Stabilitas Lereng Tanah Lempung Plastisitas Rendah

Mahardi Kamalika Khusna Ali, Rina Rebut Rayhansah

Abstract


Indonesia sebagai wilayah tropis memiliki curah hujan tinggi. Kondisi ini membuat tanah lempung berplastisitas rendah (CL), yang dominan mengandung mineral kaolinit mudah kehilangan kekuatan saat kadar air meningkat. Kondisi ini meningkatkan risiko keruntuhan lereng. Metode stabilisasi konvensional mahal dan berdampak lingkungan. Microbially Induced Calcite Precipitation (MICP) menjadi alternatif ramah lingkungan karena menghasilkan kalsium karbonat (CaCO₃) yang dapat mengikat partikel tanah. Penelitian bertujuan untuk mengevaluasi pengaruh MICP biostimulasi terhadap perilaku lereng tanah lempung melalui model skala kecil. Model lereng dibuat dari tanah CL dalam box kaca berukuran 60 × 14 × 25 cm dengan sudut 60°. Dua kondisi diuji, yaitu normal (air) dan MICP (larutan sementasi) dengan inkubasi 7 hari pada suhu ruangan. Dilakukan pengujian pembebanan serta uji geser langsung pada tiga tegangan normal. Parameter yang dianalisis meliputi load–deformation, modulus elastisitas (E₀, E₅₀, Eₜ), kohesi (c), sudut geser dalam (φ), serta validasi statistik dengan ANOVA. Hasil menunjukkan MICP mampu meningkatkan respon beban sebesar 105,4 % dengan p-value 0,000. Nilai E₅₀ meningkat 24.5%, dan Eₜ meningkat sebesar 35%. Kohesi meningkat sebesar 96,9%, sedangkan sudut geser meningkat sebesar 11% dengan p-value 0,001. Temuan ini menunjukkan MICP mampu meningkatkan kapasitas respon beban lereng, kekakuan, dan kuat geser tanah serta berpotensi sebagai teknologi stabilisasi lereng tanah lempung yang efektif berkelanjutan.

Keywords


MICP, Stabilisasi Lereng, Modulus Elastisitas, Kuat Geser, Tanah lempung CL

Full Text:

PDF

References


Anburuvel, A. (2024). The Engineering Behind Soil Stabilization with Additives: A State-of-the-Art Review. In Geotechnical and Geological Engineering (Vol. 42). Springer International Publishing. https://doi.org/10.1007/s10706-023-02554-x

ASTM D 3080-03. (2003). Direct Shear Test of Soilds Under Consolidated Drained Conditions. ASTM International West Conshohocken, PA, 04, 1–7.

Bidang Klimatologi Badan Meteorologi, D., & Geofisika Jakarta, D. (2024). Catatan Iklim Dan Kualitas Udara Indonesia 2024. 1–104.

Chittoori, B. C. S., Rahman, T., & Burbank, M. (2021). Microbial-Facilitated Calcium Carbonate Precipitation as a Shallow Stabilization Alternative for Expansive Soil Treatment. Geotechnics, 1(2), 558–572. https://doi.org/10.3390/geotechnics1020025

Gowthaman, S., Koizumi, H., Nakashima, K., & Kawasaki, S. (2023). Field experimentation of bio-cementation using low-cost cementation media for preservation of slope surface. Case Studies in Construction Materials, 18(January). https://doi.org/10.1016/j.cscm.2023.e02086

Hariprasad, C., Rajashekhar, M., & Umashankar, B. (2016). Preparation of Uniform Sand Specimens Using Stationary Pluviation and Vibratory Methods. Geotechnical and Geological Engineering, 34(6), 1909–1922. https://doi.org/10.1007/s10706-016-0064-0

Hou, H. J., Wang, B., Deng, Q. X., Zhu, Z. W., & Xiao, F. (2020). Model Experimental Study on Stress Transfer and Redistribution in a Clay Landslide under Surcharge Load. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/4269043

Huang, H., Huang, M., & Ding, J. (2018). Calculation of Tangent Modulus of Soils under Different Stress Paths. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/1916761

Islam, M. T., Chittoori, B. C. S., & Burbank, M. (2020). Evaluating the Applicability of Biostimulated Calcium Carbonate Precipitation to Stabilize Clayey Soils. Journal of Materials in Civil Engineering, 32(3). https://doi.org/10.1061/(asce)mt.1943-5533.0003036

Kurnia, D., Sarie, F., & Gandi, S. (2021). Pengaruh Penambahan Air Terhadap Kuat Geser. Jurnal Keilmuan Teknik Sipil, 4(2), 202–212. https://doi.org/10.31602/jk.v4i2.6427

Lehmann, P., Leshchinsky, B., Gupta, S., Mirus, B. B., Bickel, S., Lu, N., & Or, D. (2021). Clays Are Not Created Equal: How Clay Mineral Type Affects Soil Parameterization. Geophysical Research Letters, 48(20). https://doi.org/10.1029/2021GL095311

Li, Y., Xu, Q., Li, Y., Li, Y., & Liu, C. (2022). Application of Microbial-Induced Calcium Carbonate Precipitation in Wave Erosion Protection of the Sandy Slope: An Experimental Study. Sustainability (Switzerland), 14(20). https://doi.org/10.3390/su142012965

Liu, B., Zhu, C., Tang, C. S., Xie, Y. H., Yin, L. Y., Cheng, Q., & Shi, B. (2020). Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Engineering Geology, 264. https://doi.org/10.1016/j.enggeo.2019.105389

Małkowski, P., Ostrowski, Ł., & Brodny, J. (2018). Analysis of Young’s modulus for Carboniferous sedimentary rocks and its relationship with uniaxial compressive strength using different methods of modulus determination. Journal of Sustainable Mining, 17(3), 145–157. https://doi.org/10.1016/j.jsm.2018.07.002

Maston, O., Ouahbi, T., Taibi, S., Hajjar, A. El, Sapin, L., Esnault-Filet, A., … Fleureau, J. M. (2025). Effect of MICP treatment on the mechanical properties of clay soils. Transportation Geotechnics, 50(December 2024), 101483. https://doi.org/10.1016/j.trgeo.2025.101483

Mohamed, A. A. M. S., Al-Ajamee, M., Kobbail, A., Dahab, H., Abdo, M. M., & Alhassan, H. E. (2022). A study on soil stabilization for some tropical soils. Materials Today: Proceedings, 60, 87–92. https://doi.org/10.1016/j.matpr.2021.12.260

Nkalih Mefire, A., Njoya, A., Yongue Fouateu, R., Mache, J. R., Tapon, N. A., Nzeukou Nzeugang, A., … Fagel, N. (2015). Occurrences of kaolin in Koutaba (west Cameroon): Mineralogical and physicochemical characterization for use in ceramic products. Clay Minerals, 50(5), 593–606. https://doi.org/10.1180/claymin.2015.050.5.04

Pakbaz, M. S., Ghezelbash, G. R., & Afzal, A. (2020). Sugarcane Molasses: A Cheap Carbon Source for Calcite Production in Different Class of Soils using Stimulation of Indigenous Urease-producing Bacteria. Geomicrobiology Journal, 37(3), 213–229. https://doi.org/10.1080/01490451.2019.1691684

Santhikala, R., Chandramouli, K., & Pannirselvam, N. (2022). Stabilization of expansive soil using flyash based geopolymer. Materials Today: Proceedings, 68, 110–114. https://doi.org/10.1016/j.matpr.2022.07.006

Su, H., Xiao, H., Li, Z., Tian, X., Luo, S., Yu, X., & Ouyang, Q. (2022). Experimental Study on Microstructure Evolution and Fractal Features of Expansive Soil Improved by MICP Method. Frontiers in Materials, 9(March), 1–10. https://doi.org/10.3389/fmats.2022.842887

Tian, X., Xiao, H., Li, Z., Li, Z., Su, H., & Ouyang, Q. (2022). Experimental Study on the Strength Characteristics of Expansive Soils Improved by the MICP Method. Geofluids, 2022, 1–10. https://doi.org/10.1155/2022/3089820

Tiwari, N., Satyam, N., & Sharma, M. (2021). Micro-mechanical performance evaluation of expansive soil biotreated with indigenous bacteria using MICP method. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89687-2

Urmi, Z. A., Saeidi, A., Yerro, A., & Chavali, R. V. P. (2023). Prediction of post-peak stress-strain behavior for sensitive clays. Engineering Geology, 323(June), 107221. https://doi.org/10.1016/j.enggeo.2023.107221

Wang, Z., Yang, T., Liu, Y., Jiang, Q., Shang, H., & Zheng, C. (2024). Montmorillonite combined with microbially induced carbonate precipitation for wind erosion control of bare surface soil in arid mining area. Process Safety and Environmental Protection, 187(February), 926–939. https://doi.org/10.1016/j.psep.2024.05.015

Zhang, J., Meng, Z., Jiang, T., Wang, S., Zhao, J., & Zhao, X. (2022). Experimental Study on the Shear Strength of Silt Treated by Xanthan Gum during the Wetting Process. Applied Sciences (Switzerland), 12(12). https://doi.org/10.3390/app12126053

Zhang, Z., Lu, H., Tang, X., Liu, K., Ye, L., & Ma, G. (2024). Field investigation of the feasibility of MICP for Mitigating Natural Rainfall-Induced erosion in gravelly clay slope. Bulletin of Engineering Geology and the Environment, 83(10). https://doi.org/10.1007/s10064-024-03909-1




DOI: http://dx.doi.org/10.30872/ts.v9i2.23900

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Teknologi Sipil : Jurnal Ilmu Pengetahuan dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editor Teknik Sipil Mulawarman Address:
ISSN 2252-7613 (Print) | ISSN 2964-5212 (Online)

Published by: Mulawarman University
Managed by : Civil Engineering Department
Jalan Sambaliung No.9 Sempaja Selatan Samarinda Utara,
Kalimantan Timur 75117
 - Indonesia
E-mail: jtsunmul@gmail.com
OJS: e-journals.unmul.ac.id/index.php/TS

Contact Person: Mardewi Jamal

 Creative Commons License

Civil Engineering Mulawarman by https://e-journals.unmul.ac.id/index.php/TS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Under the CC BY-SA license, authors and other users are able to reprint, distribute or use the material for commercial purposes so long as they give attribution to the journal Informatika Mulawarman and license the republished material under the same license.