Perbandingan Algoritma Temporal Convolutional Neural (TCN) dan Long Short-term Memory (LSTM) untuk Memprediksi Harga Saham Menggunakan Time Series Data
Abstract
Penelitian ini bertujuan untuk memberikan wawasan tambahan bagi investor yang berinvestasi di pasar modal dengan membandingkan Algoritma TCN dan LSTM dalam memprediksi data deret waktu. Data yang digunakan mencankup periode 1 Januari 2023 hingga 31 Desember 2023 dan diambil dari Yahoo Finance, dengan variabel-variable seperti harga pembukaan, penutupan, dan volume. Proses penelitian melibatkan pembersihan data, pembagian data latih dan uji, serta pemodelan dengan pencarian parameter optimal menggunakan Hyperband. Hasil menunjukan bahwa TCN lebih efisien dengan RSME sebesar 167.06 dan MAPE 2,58%, sementara LSTM memperoleh RMSE 467.52 dan MAPE 7,05% dengan waktu peltihan TCN yang lebih singkat (40.8 detik) dibandingkan LSTM (252.5 detik).
Keywords
Full Text:
PDFReferences
BEI, "Saham," 2023. [Online]. Available: https://www.idx.co.id/id/produk/saham. [Accessed: Sep. 11, 2023].
Juniarto, "Analisis teknikal terhadap pergerakan harga saham subsektor perbankan di LQ45 (dengan pendekatan candlestick, rasio Fibonacci, dan moving average convergence divergence (MACD))," 2022. DOI: 10.29313/.v7i1.27026.
KSEI, "Kustodian Efek Sentral Indonesia," 2023. [Online]. Available: https://www.ksei.co.id/archive_download/holding_composition. [Accessed: Oct. 1, 2023].
D. Ismiyana and M. Y. Putra, "Komparasi algoritma dalam memprediksi perubahan harga saham GOTO menggunakan Rapidminer," Jurnal Komputer Indonesia, vol. 11, no. 1, 2023. DOI: 10.31294/jki.v11i1.16153.
A. Larasati, A. M. Hajji, Y. W. Chen, E. Anandya, A. T. Wahyu, and V. E. B. Darmawan, "Building regression model to estimate NOX emission pollutant of backhoe equipment," in AIP Conf. Proc., vol. 2227, no. 1, 2020.
K. Hanna and I. Wigmore, "Historical Data," 2022. [Online]. Available: https://www.techtarget.com/whatis/definition/historical-data. [Accessed: Oct. 15, 2023].
A. Larasati, Y. W. Chen, A. M. Hajji, A. F. P. Mahardika, and V. E. B. Darmawan, "Determining predictor variables of HC, CO, and CO₂ emissions using decision tree models," IOP Conf. Ser.: Mater. Sci. Eng., vol. 669, no. 1, p. 012032, 2019.
Z. He, X. Wang, and C. Li, "A time series intrusion detection method based on SSAE, TCN and Bi-LSTM," Computers, Materials and Continua, vol. 78, no. 1, pp. 845–871, 2024.
Y. Chen, Y. Kang, Y. Chen, and Z. Wang, "Probabilistic forecasting with temporal convolutional neural network," Neurocomputing, vol. 399, pp. 491–501, 2020.
J. Yao, Z. Cai, Z. Qian, and B. Yang, "A noval approach based on TCN-LSTM network for predicting waterlogging depth with waterlogging monitoring station," PLOS ONE, vol. 18, no. 10, 2023. DOI: https://doi.org/10.1371/journal.pone.0286821.
F. Lässig, "Temporal Convolutional Networks and Forecasting," 2020. [Online]. Available: https://medium.com/unit8-machine-learning-publication/temporal-convolutional-networks-and-forecasting-5ce1b6e97ce4. [Accessed: Nov. 20, 2023].
R. Wan, S. Mei, J. Wang, M. Liu, and F. Yang, "Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting," Electronics, vol. 8, no. 8, p. 876, 2019. DOI: https://doi.org/10.3390/electronics8080876.
A. Satyo, J. K. Noer Ali, and K. Bekasi, "Prediksi data time series saham Bank BRI dengan mesin belajar LSTM (Long Short-Term Memory)," J. Inf. and Inf. Security (JIFORTY), vol. 1, no. 1, pp. 1–8, 2020. DOI: 10.31599/jiforty.v1i1.133.
S. Ashraf, "Introduction to Sequence Learning Models: RNN, LSTM, GRU," 2021. [Online]. Available: https://doi.org/10.13140/RG.2.2.36370.99522.
L. Li, K. Jamieson, A. Rostamizadeh, and A. Talwalkar, "Hyperband: A novel bandit-based approach to hyperparameter optimization," J. Mach. Learn. Res., vol. 18, 2018. [Online]. Available: http://jmlr.org/papers/v18/16-558.html.
I. Mahesastra, I. Darmawan, and I. Kadyanan, "Klasifikasi gambar dalam dan luar ruangan dengan metode CNN dan Hyperband," vol. 1, no. 3, 2023.
J. P. Mohanty and S. Dash, "Forecasting energy consumption using hybrid CNN and LSTM auto-encoder network with Hyperband optimization," Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 10, pp. 1041–1055, 2022. DOI: https://doi.org/10.22214/ijraset.2022.47136.
A. Wulandari, "Analisis kinerja algoritma CNN dan LSTM untuk memprediksi tinggi muka air di DKI Jakarta, Indonesia," 2022. [Online]. Available: http://digilib.mercubuana.ac.id/. [Accessed: Feb. 3, 2023].
O. Ulfah, H. Ricky, A. Alfian, and W. Galih, "Klasifikasi penyakit padi berdasarkan citra daun menggunakan model terlatih ResNet101," J. RESTI, vol. 5, no. 6, pp. 1216–1222, 2021. DOI: https://doi.org/10.29207/resti.v5i6.3607.
R. Julian and M. R. Pribadi, "Peramalan harga saham pertambangan pada Bursa Efek Indonesia (BEI) menggunakan Long Short-Term Memory (LSTM)," Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, 2021. [Online]. Available: http://jurnal.mdp.ac.id.
I. Nabillah and I. Ranggadara, "Mean absolute percentage error untuk evaluasi hasil prediksi komoditas laut," JOINS, vol. 5, no. 2, pp. 250–255, 2020. DOI: https://doi.org/10.33633/joins.v5i2.3900.
I. G. L. Yudha, N. A. Sanjaya ER, A. A. I. N. E. Karyawati, I. B. G. Dwidasmara, I. G. N. A. C. Putra, and I. B. M. Mahendra, "Article classification using convolutional neural network (CNN) and chi-square feature selection," JELIKU, vol. 11, no. 3, p. 529, 2022. DOI: https://doi.org/10.24843/JLK.2023.v11.i03.p08.
L. Listyalina, "Penentuan kombinasi kernel terbaik menggunakan median filter," Teknoin, vol. 22, 2016.
Y. Hidayat, E. Erwin, and D. Handayani, "Penerapan 1D-CNN untuk analisis sentimen ulasan produk kosmetik berdasar Female Daily Review," Jurnal Nasional Teknologi dan Sistem Informasi, vol. 8, no. 3, pp. 153–163, 2023. DOI: 10.25077/TEKNOSI.v8i3.2022.153-163.
Y. Findawati, U. Indahyanti, Y. Rahmawati, dan R. Puspitasari, "Sentiment Analysis of Potential Presidential Candidates 2024: A Twitter-Based Study," Academia Open, vol. 8, no. 1, 2023. DOI: 10.21070/acopen.8.2023.7138.
DOI: http://dx.doi.org/10.30872/jurti.v9i3.21683
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Rekayasa Teknologi Informasi (JURTI)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Alamat Redaksi :
Program Studi Informatika
Fakultas Teknik
Jl. Sambaliung No. 9 Kampus Gunung Kelua Samarinda 75119 - Kalimantan Timur
e-mail : jurti.unmul@fkti.unmul.ac.id
Url : http://e-journals.unmul.ac.id/index.php/INF
Contact Person : Medi Taruk [081543438301]
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.