Prediksi Penjualan Produk Menggunakan Algoritma Xtreme Gradient Boosting

Heni Sulastri, Zhehan Gustiyandi, Aradea Aradea

Abstract


The rapid advancement of the digital era has intensified competition in the retail sector, including at SRC Pak Didin's store. One of the challenges faced by the store is suboptimal product management, which impacts its operational efficiency. Data Science offers solutions for enhancing business performance, such as improving operational efficiency and optimizing marketing or sales strategies. This study aims to predict product sales at SRC Pak Didin’s store using the XGBoost algorithm and to propose a sales strategy that can be applied to improve the store's operations. The dataset used in this research comprises 24 product types over the past three months, starting from September 2024. These products include instant noodles (various flavors such as fried, chicken broth, Aceh, and Soto), bottled tea, soft drinks, herbal drinks, instant coffee, snacks, biscuits, bottled water, bread, flour, sugar, seasoning mixes, ice cream, boxed milk, and other light snacks. The research employs the XGBoost algorithm to analyze sales data from the past three months and predict sales for the following month. Evaluation metrics used include Mean Squared Error (MSE) and R-squared (R²). The XGBoost model was tested in three scenarios: XGBoost Regression, XGBoost Regression Linear (single variable x), and XGBoost Regression Linear (two variables x), with the objective of identifying the best-performing model. The accuracy results show that the XGBoost Regression model achieved 96.56%, the XGBoost Regression Linear model with a single variable x achieved 99.22%, and the XGBoost Regression Linear model with two variables x achieved 99.59%. The XGBoost Regression Linear model with two variables was selected as the best model due to its highest accuracy score. This model can effectively predict product sales and provide actionable insights for developing sales strategies, benefiting SRC Pak Didin's store operations.

Keywords


XGBoost Regression, XGBoost Regression Linear), Prediction, Mean Squad Eror, R-squared, Sales Strategy

Full Text:

PDF

References


D. Suparman, “Pengaruh Harga Dan Kualitas Pelayanan Terhadap Penjualan Spare Part Motor Di Pt. Slm (Selamat Lestari Mandiri),” J. Ekon., vol. Vol. 07 No, no. 2, p. 2, 2018.

Hartatik et al., Data Science for Business (Pengantar dan Penerapan Berbagai Sektor), no. May. 2023.

P. Dankorpho, “Sales Forecasting for Retail Business using XGBoost Algorithm,” J. Comput. Sci. Technol. Stud., vol. 6, no. 2, pp. 136–141, 2024, doi: 10.32996/jcsts.2024.6.2.15.

D. Y. Y. Sim and Z. Wei, “XGBoost Regression Algorithms for Efficient Predictions on Inventory Sales and Management,” no. September, pp. 66–71, 2024, doi: 10.1109/eeet61723.2023.00033.

R. Siringoringo, R. Perangin-angin, and M. J. Purba, “Segmentasi Dan Peramalan Pasar Retail Menggunakan Xgboost Dan Principal Component Analysis,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 5, no. 1, pp. 42–47, 2021, doi: 10.46880/jmika.vol5no1.pp42-47.

A. Alfani W.P.R., F. Rozi, and F. Sukmana, “Prediksi Penjualan Produk Unilever Menggunakan Metode K-Nearest Neighbor,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 1, pp. 155–160, 2021, doi: 10.29100/jipi.v6i1.1910.

Ab. Bin Tayyab and M. F. Nasim, “Walmart Sales Prediction Using Machine Learning Algorithms,” Ann. Rom. Soc. Cell Biol., vol. 25, pp. 7872-7882–7872 – 7882, 2024.

F. Riza, “Analisis dan Prediksi Data Penjualan Menggunakan Machine Learning dengan Pendekatan Ilmu Data,” Data Sci. Indones., vol. 1, no. 2, pp. 62–68, 2022, doi: 10.47709/dsi.v1i2.1308.

M. Riyyasy, Azfa, Rasikh, W. Aghniya, Nouval, and H. Tantyoko, “Penerapan Algoritma Machine Learning Untuk Memprediksi Term Deposit Nasabah Perbankan,” J. Inform. Inf. Technol., vol. 2, no. 3, pp. 145–156, 2023.

N. Ambari, N. Puspitasari, and A. Septiarini, “Prediction of Budget Planning Using The Long Short Term Memory,” J. Artif. Intell. Softw. Eng., vol. 5, no. 1, pp. 116–125, 2025.

D. L. Yuliani, N. Mulyatini, and E. Herlina, “ANALISIS MATERIAL REQUIREMENT PLANNING DAN MANAJEMEN RANTAI PASOKAN DALAM MENINGKATKAN KEUNGGULAN BERSAING (Suatu Studi Pada …,” … Entrep. J., vol. 1, no. September, pp. 32–46, 2019.

S. E. Herni Yulianti, Oni Soesanto, and Yuana Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,” J. Math. Theory Appl., vol. 4, no. 1, pp. 21–26, 2022, doi: 10.31605/jomta.v4i1.1792.

K. Li, “A Sales Prediction Method Based on XGBoost Algorithm Model,” BCP Bus. Manag., vol. 36, pp. 367–371, 2023, doi: 10.54691/bcpbm.v36i.3487.

D. Riando and A. Afiyati, “IMPLEMENTATION OF XGBOOST ALGORITHM TO PREDICT THE SELLING PRICE OF CAYENNE PEPPERS IN,” vol. 4, no. 09, pp. 741–749, 2024.

S. Priadana and D. Sunarsi, METODE PENELITIAN KUANTITATIF. 2021.

D. T. Larose and C. D. Larose, Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition, vol. 9780470908. 2014.

K. Abdullah et al., Metodologi Penelitian Kuantitatif, vol. 3, no. 2. 2021.

X. Dairu and Z. Shilong, “Machine Learning Model for Sales Forecasting by Using XGBoost,” 2021 IEEE Int. Conf. Consum. Electron. Comput. Eng. ICCECE 2021, no. Iccece, pp. 480–483, 2021, doi: 10.1109/ICCECE51280.2021.9342304.

A. Wibowo, “Analisa Dan Visualisasi Data Penjualan Menggunakan Exploratory Data Analysis Pada PT. Telkominfra,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2292–2304, 2022, doi: 10.35957/jatisi.v9i3.2737.

F. Bolikulov, R. Nasimov, A. Rashidov, F. Akhmedov, and Y. I. Cho, “Effective Methods of Categorical Data Encoding for Artificial Intelligence Algorithms,” Mathematics, vol. 12, no. 16, 2024, doi: 10.3390/math12162553.

D. Arisandi, S. Salamun, and A. R. Putra, “Prediksi Penerimaan Siswa Baru dengan Metode Single Exponential Smoothing Melalui Metrik Evaluasi MAD, MSE dan MAPE,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1197–1204, 2023, doi: 10.47065/josh.v4i4.3658.

A. M. M. Fattah, A. Voutama, N. Heryana, and N. Sulistiyowati, “Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1669, 2022, doi: 10.30865/jurikom.v9i5.5021.




DOI: http://dx.doi.org/10.30872/jurti.v9i1.20419

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Rekayasa Teknologi Informasi (JURTI)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Alamat Redaksi : 
Program Studi Informatika
Fakultas Teknik 
Jl. Sambaliung No. 9 Kampus Gunung Kelua Samarinda 75119 - Kalimantan Timur
e-mail : jurti.unmul@fkti.unmul.ac.id
Url : http://e-journals.unmul.ac.id/index.php/INF
Contact Person : Medi Taruk [081543438301]

 Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

StatCounter - Free Web Tracker and Counter