BIOCHAR YANG DIPRODUKSI DENGAN TUNGKU DRUM TERTUTUP RETORT MEMBERIKAN PERTUMBUHAN TANAMAN YANG LEBIH TINGGI (BIOCHAR PRODUCED BY RETORT CLOSED DRUM KILN PROMOTES HIGHER PLANT GROWTH RATE)

Syahrinudin Syahrinudin, Arya Wijaya, Tunggul Butarbutar, Wahjuni Hartati, Ibrahim Ibrahim, Maurit Sipayung

Abstract


ABSTRACT

Interests on biochar application for the improvement of soil properties and fertily are increasing worldwide nowadays and numerous of production techniques are now available. This research was aimed at the investigation (a) on the characteristics biochar produced by 3 (three) different techniques, i.e: (1) traditional soil pit, (2) retort closed drum and (3) open drum kilns, as well as (b) on growth (height, leaf number and survival) response of Shorea leprosula seedling to 20%v biochar application on bioassay trial in the nursery. Bioassay trial was carried out in nursery of Forestry Faculty of Mulawarman University, Samarinda, Indonesia and was in accordance with Completely Randomized Design (CRD) applying 4 treatments and 3 replications.

Of those 3 production techniques, retort closed drum kiln production technique was the most promising for further development and adoption providing not only that the biochar produced gave better properties and soil improvement capacity but also higher production recovery and less time and labour involvement. Furthermore, eventhough it was not statistically significant, biochar produced by retort closed drum gave better growth (height and leaf number) rate to S. leprosula seedlings in bioassay trial compared to those given by biochar produced by other techniques and without biochar treatments.


Full Text:

PDF

References


PUSTAKA

Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G. 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191.

Adam JC. 2009. Improved and more environmentally friendly charcoal production system using a low-cost retort-kiln (Eco-charcoal). Renewable Energy 34(8):1923–1925.

Akhtar SS, Andersen MN, Liu F. 2015. Biochar mitigates salinity stress in potato. J Agron Crop Sci 201:368–378.

Ali S, Rizwan M, Qayyum MF, Ok YS, Ibrahim M, et al. 2017. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res 24:12700–12712. doi: 10.1007/s11356-017-8904-x

Antal MJ, and Gronli M. 2003. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42:1619–1640. doi:10.1021/ie0207919

Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T and Horie T. 2009. Biochar amendment techniques for upland rice production in Northern Laos. Field Crops Res., 111(1-2), 81-84.

Bailis R. 2009. Modeling climate change mitigation from alternative methods of charcoal production in Kenya. Biomass Bioenergy 33(11):1491–1502.

Basta AH, Fierro V, El-Saied H, Celzard A. 2011. Effect odeashing rice straws on their derived activated carbons produced by phosphoric acid activation. Biomass Bioenergy 35:1954–1959. doi:10.1016/j.biombioe.2011.01.043.

Blanco-Canqui H, Lal R .2004. Mechanisms of carbon sequestration in soil aggregates. Crit Rev Plant Sci 23:481–504

Carter S, Shackley S, Sohi S, Suy TB and Haefele S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 2013, 3(2), 404-418; doi:10.3390/agronomy3020404.

Castaldi, S., M. Riondino, S. Baronti, F.r. Esposito, R. Marzaioli, F.a. Rutigliano, F.p. Vaccari, and F. Miglietta. "Impact of Biochar Application to a Mediterranean Wheat Crop on Soil Microbial Activity and Greenhouse Gas Fluxes." Chemosphere 85 (2011): 1464-471.

Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634

Chan KY and Xu ZH. 2009. Nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 67–84.

Cornelissen G, Martinsen V, Shitumbanuma V, Alling V, Breedveld GD, Rutherford DW, et al. 2013. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy 3: 256-274. doi:10.3390/agronomy3020256.

Cornelissen G, Pandit NR, Taylor P, Pandit BH, Sparrevik M, Schmidt HP. 2016. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production. PLoS ONE 11(5): e0154617. doi:10.1371/journal. pone.0154617.

Dharmakeerthi RS, Chandrasiri JAS and Edirimanne VU. 2012. Effect of rubber wood biochar on nutrition and growth of nursery plants of Hevea brasiliensis established in an Ultisol. SpringerPlus, 1:84.

Egamberdieva D, Reckling M, Wirth S. 2017. Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur J Soil Biol 78:38–42.

Farhangi-Abriz S and Torabian S. 2017. Biochar Increased Plant Growth-Promoting Hormones and Helped to Alleviates Salt Stress in Common Bean Seedlings. J Plant Growth Regul. doi: 10.1007/s00344-017-9756-9.

Gartler J, Robinson B, Burton K, Clucas L. 2013. Carbonaceous soil amendments to biofortify crop plants with zinc. Sci Total Environ 465:308–313. doi:10.1016/j.scitotenv.2012.10.027.

Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. T Asabe 51:2061–2069

Glaser B, Lehmann J, and Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review. Biol. Fertil. Soils 35:219–230. doi:10.1007/s00374-002-0466-4

Haider G, Koyro H-W, Azam F, Steffens D, Müller C, Kammann C. 2014. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil 395:141–157. doi: 10.1007/s11104-014-2294-3.

Herath H, Camps-Arbestain M, Hedley M. 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209–210:188–197.

Huang W, Ji H, Gheysen G, Debode J and Kyndt T. 2015. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biology 15:267-281. doi: 10.1186/s12870-015-0654-7.

Jones DL, Edwards-Jones G, Murphy DV. 2011. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol Biochem 43:804–813

Kammann CI, Linsel S, Gößling JW dan Koyro H-W. 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil 345:195–210. doi: 10.1007/s11104-011-0771-5.

Kanouo BMD, Allaire SE and Munson AD. 2017. Quality of Biochars Made from Eucalyptus Tree Bark and Corncob Using a Pilot-Scale Retort Kiln. Waste Biomass Valor. DOI 10.1007/s12649-017-9884-2.

Kim HS, Kim KR, Yang JE, Ok YS, Owens G, Nehls T, Wessolek G, Kim KH. 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 142:153–159.

Lehmann J, da Silva JP, Steiner JrC, Nehls T, Zech W, and Glaser B. 2003. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 249:343–357. doi:10.1023/A:1022833116184

Lehmann J, Gaunt J, and Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems: A review. Mitig. Adapt. Strategies Glob. Change 11:395–419. doi:10.1007/s11027-005-9006-5

Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, and Crowley D. 2011. Biochar effects on soil biota: A review. Soil Biol. Biochem. 43:1812–1836. doi:10.1016/j.soilbio.2011.04.022

Lehmann J. 2007. A handful of Carbon. Nature 477:143–144. doi:10.1038/447143a.

Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J and Neves EG. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J., 70, 1719-1730, doi:10.2136/sssaj2005.0383

Liu A, Tian D, Xiang Y, Mo H. 2016. Biochar improved growth of an important medicinal plant (Salvia miltiorrhiza Bunge) and inhibited its cadmium uptake. J Plant Biol Soil Health 3(2): 1-6.

Lu WW, Ding WX, Zhang JH, Li Y, Luo JF, Bolan N and Xie ZB. 2014. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biol. Biochem., 76, 12-21, doi:10.1016/j.soilbio.2014.04.029

Luo F, Song J, Xia WX, Dong MG, Chen MF and Soudek P. 2014. Characterization of contaminants and evaluation of the suitability for land application of maize and sludge biochars. Environ. Sci. Pollut. Res. Int., 21, 8707-8717, doi:10.1007/s11356-014-2797-8

Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128.

Marjenah, Kiswanto, Purwanti S, Sofyan FPM. 2016. The effect of biochar, cocopeat and saw dust compost on the growth of two dipterocarps seedlings. Nusantara Bioscience 8(1): 39-44.

Mehari ZH, Elad Y, Rav-David D, Graber ER and Harel YM. 2015. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signalling. Plant Soil 395:31–44. doi: 10.1007/s11104-015-2445-1.

Mickan BS, Abbott LK, Stefanova K and Solaiman ZM. 2016. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza 26:565–574. doi: 10.1007/s00572-016-0693-4.

Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW and Niandou MA. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 174:105–112. doi:10.1097/SS.0b013e3181981d9a

Ogawa M, Okimori Y, Takahashi F. 2006. Carbon sequestration by carbonisation of biomass and forestation: three case studies. Mitigation and Adaptation Strategies for Global Change 11:429–444

Oguntunde PG, Abiodun BJ, Ajayi AE, and van de Giesen N. 2008. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutrition Soil Sci., 171, 591- 596, doi:10.1002/jpln.200625185

Oguntunde PG, Fosu M, Ajayi AE and van de Giesen N. 2004. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol. Fert. Soils, 39, 295-299, doi:10.1007/s00374-003-0707-1

Pennise DM, Smith KR, Kithinji JP, Rezende ME, Raad TJ, Zhang J, et al. 2001. Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil. Journal of Geophysical Research: Atmospheres. 106(D20): 24143–24155.

Pratiwi EPA and Shinogi Y. 2016. Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ (2016) 14:521–532. doi: 10.1007/s10333-015-0521-z.

Rees F, Germain C, Sterckeman T, Morel J-L. 2015. Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar.

Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, et al. 2015. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res (2016) 23:2230–2248. doi: 10.1007/s11356-015-5697-7.

Ruhiyat D. 1989. Die Entwicklung der Standurlichen Naehrstoffvorraete bei Naturnaeher Walderwirtschaftung und in Plantagenbetrieb, Ostkalimanatan-Indonesien. Diss. Forst. Univ. Goettingen.

Smebye AB, Sparrevik M, Schmidt HP, Cornelissen G. 2017. Life-cycle assessment of biochar production systems in tropical rural areas: Comparing flame curtain kilns to other production methods. Biomass and Bioenergy 101: 35-43. doi: 10.1016/j.biombioe.2017.04.001.

Sparrevik M, Adam C, Martinsen V, Cornelissen G. 2014. Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass Bioenergy 72(1): 65-73.

Steiner C, Teixeira WG, Lehmann J, Nehls T, Macêdo JLV, Blum WEH and Zech W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil, 291, 275-290, doi:10.1007/s11104-007-9193-9

Sun D, Meng J, Liang H, Yang E, Huang Y, et al. 2015. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. J Soils Sediments) 15:271–281. doi: 10.1007/s11368-014-0996-z.

Syahrinudin. 1997. The role of undergrowth on timber estate of Eucalyptus deglupta in East Kalimantan. M.Sc. thesis submitted to Forestry and Ecology Faculty, Goettingen University. Goettingen.

Syahrinudin. 2005. The potential of oil palm and forest plantations for carbon sequestration on degraded lands in Indonesia. Ecology and Development Series 28. Cuvillier Verlag. Goettingen. Pp 107.

Thies J, and Rillig MC. 2009. Characteristics of biochar: Biological properties. In: J. Lehmann and S. Joseph, editors, Biochar for environmental management: Science and technology. Earthscan, London. p. 85–105.

Tsai WT, Lee MK, Chang YM (2007) Fast pyrolysis of rice husk: product yields and composition. Bioresour Technol 98(1):22–28. doi:10.1016/j.biortech.2005.12.005.

Uzun BB, Putun AE, Putun E. 2006. Fast pyrolysis of soybean cake: product yields and composition. Bioresour Technol 97(4):569–576. doi:10.1016/j.biortech.2005. 03.026.

William K and Qureshi RA. 2015. Evaluation of biochar as fertilizer for the growth of some seasonal vegetables. J. Bioresource Manage. 2(1): 41-46.

Yelverton FH, Weber JB, Peedin G, Smith WD. 1996. Using activated charcoal to inactive agricultural chemical spills. NC Coop Ext Ser Pub AG-442:1–4

Zheng RL, Cai C, Liang JH, Huang Q, Chen Z, Huang YZ, Sun GX. 2012. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89:856–862. doi:10.1016/j.chemosphere.2012.05.008.


Refbacks

  • There are currently no refbacks.